Coupling Molecular Dynamics and Continua with Weak Constraints

نویسندگان

  • Konstantin Fackeldey
  • Dorian Krause
  • Rolf Krause
  • Christoph Lenzen
چکیده

One of the most challenging problems in dynamic concurrent multiscale simulations is the reflectionless transfer of physical quantities between the different scales. In particular, when coupling molecular dynamics and finite element discretizations in solid body mechanics, often spurious wave reflections are introduced by the applied coupling technique. The reflected waves are typically of high frequency and are arguably of little importance in the domain where the finite element discretization drives the simulation. In this work, we provide an analysis of this phenomenon. Based on the gained insight, we derive a new coupling approach, which neatly separates high and low frequency waves. Whereas low frequency waves are permitted to bridge the scales, high frequency waves can be removed by applying damping techniques without affecting the coupled share of the solution. As a consequence, our new method almost completely eliminates unphysical wave reflections and deals in a consistent way with waves of arbitrary frequencies. The separation of wavelengths is achieved by employing a discrete L2-projection, which acts as a low pass filter. Our coupling constraints enforce matching in the range of this projection. With respect to the numerical realization this approach has the advantage of a small number of constraints, which is computationally efficient. Numerical results in one and two dimensions confirm our theoretical findings and illustrate the performance of our new weak coupling approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics with coupling to an external bath

Articles you may be interested in Dynamics of a two-level system coupled to a bath of spins Hybrid quantum/classical molecular dynamics for a proton transfer reaction coupled to a dissipative bath Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or press...

متن کامل

Diffusive Dynamicsof Binary Lennard-Jones Liquid in the Presence of Gold Nanoparticle: A Mode Coupling Theory Analysis

Molecular dynamics simulation has been performed to analyze the effect of the presence of gold nanoparticle on dynamics of Kob-Anderson binary Lennard-Jones (BLJ) mixture upon supercooling within the framework of the mode coupling theory of the dynamic glass transition. The presence of gold nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution ...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Implementation aspects of the bridging scale method and application to intersonic crack propagation

The major purpose of this work is to investigate the performance of the bridging scale method (BSM), a multiscale simulation framework for the dynamic, concurrent coupling of atomistics to continua, in capturing shear-dominant failure. The shear-dominant failure process considered in this work is intersonic crack propagation along a weak plane in an elastic material, similar to the seminal mole...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2011